Einstein HEALTHCARE NETWORK

Now part of Jefferson Health

Introduction

- Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease and is associated with increased risk of coronary artery disease and stroke.
- However, data on MAFLD burden in these high-risk patients is sparse.

Aims & Objectives

- To estimate the prevalence of MAFLD among patients with prior myocardial infarction (MI) or ischemic stroke (IS)
- To identify disparities in clinical and laboratory characteristics
- To evaluate the racial-ethnic disparities in MAFLD

Methods

- The National Health and Nutrition Examination Survey (NHANES) 2017-2018 database was queried to include patients \geq 20 years old with prior MI or IS.
- Patients with a liver ultrasonography with transient elastography were included, and those with a history of hepatitis B or C or daily alcohol consumption >30 g in men and >20 g in women were excluded.
- MAFLD was diagnosed based on a Fibroscan CAP (controlled attenuation parameter) ≥302 dB/m and severity graded on Vibration Controlled Transient Elastography (VCTE) with cutoffs of 8.2 kPa, 9.7 kPa, and 13.6 kPa for fibrosis grades \geq F2, \geq F3, and F4, respectively.

Results

- A total of 10,258,276 patients (median age: 65 years; female: 42.1%) were included (weighted)
- The overall prevalence of MAFLD was 39.3%.
- MAFLD patients were slightly younger and had lower proportion of females. As expected, BMI, Waist circumference (WC), LDL-C, TG, HbA1c%, were found to be significantly higher in MAFLD patients (Table 1).

Racial & Ethnic Disparities in MAFLD among Patients with Prior Myocardial Infarction or Stroke

Department of Medicine, Albert Einstein Medical Center, PA; ² Kasturba Medical College, Manipal, India; ³ Department of Cardiology, Albert Einstein Medical Center, PA; ⁴ Department of Endocrinology, Albert Einstein Medical Center, PA;

<u>Table 1:</u> Clinical and Laboratory Characteristics of MAFLD and non-MAFLD Patients with Prior Myocardial Infarction or Stroke

Variable	MAFLD	Non-MAFLD	P value
Age (years; x̃)	64	66	< 0.001
Female %	28.9	50.6	< 0.001
Diabetes %	42.5	14.7	< 0.001
HTN %	64.2	49.1	< 0.001
Hyperlipidemia %	26.7	33.2	< 0.001
BMI (kg/m2; x̃)	33.5	28.1	< 0.001
Waist circumference (cm; x)	116	99	< 0.001
Total Cholesterol (mg/dl; x)	174	177	< 0.001
LDL Cholesterol (mg/dl; x̃)	111	99	< 0.001
HDL Cholesterol (mg/dl; x)	41	53	< 0.001
Triglycerides (mg/dl; x̃)	142	108	< 0.001
HbA1c % (x) -Overall	6.4	5.7	< 0.001

Table2: Prevalence and Severity of MAFLD in Patients with Prior Myocardial Infarction or Stroke Stratified by Race and Ethnicity

Table 3: Clinical and Laboratory Characteristics of MAFLD Patients with Prior Myocardial Infarction or Stroke Stratified by Race and Ethnicity

Variable	White	Black	Hispanic	Asian	P value
	N= 3233400	N= 464429	N= 265040	N= 64797	
Age (years; x̃)	64	60	55	71	< 0.001
Female %	43.8	33.3	57.1	33.3	< 0.001
Diabetes %	42.7	47.1	29	57.4	< 0.001
HTN %	64.1	71.3	61	90.6	< 0.001
Hyperlipidemia %	26.1	36.7	22.4	-	< 0.001
BMI (kg/m2; x̃)	32.9	33.9	35.1	31.2	< 0.001
Waist circumference (cm; x̃)	116.5	113	120.6	113	< 0.001
Total Cholesterol (mg/dl; x̃)	160	190	174	159	< 0.001
LDL Cholesterol (mg/dl; x̃)	99	126	111	111	< 0.001
HDL Cholesterol (mg/dl; x̃)	40	49	38	44	< 0.001
Triglycerides (mg/dl; x̃)	150	122	137	144	< 0.001
HbA1c % (x) - Diabetic	7.1	7.3	7.8	7.6	< 0.001

Avica Atri MD¹, Rasha Khan DO¹, Viha Atri MBBS², Shivaraj Patil MBBS³, Nissa Blocher MD⁴

Results (continued)

- lowest in Asians (23.8 %) (Table2).
- MAFLD-cirrhosis too, had the highest prevalence
- had the highest BMI and WC.
- had the highest TG level.

US adults with MI or IS

~40% have MAFLD ~5% of Whites and ~ 4% Hispanics have MAFLD-Cirrhosis

- prevalence and severity in the United States
- population was observed.
- could aid in secondary prevention of MI/IS.

1. Ismaiel, A., Popa, S.-L. & Dumitrascu, D. L. Acute Coronary Syndromes and Nonalcoholic Fatty Liver Disease: "Un Affaire de Coeur". Can. J. Gastroenterol. Hepate 2. Alkagiet, S., Papagiannis, A. & Tziomalos, K. Associations between nonalcoholic fatty liver disease and ischemic stroke. World J. Hepatol. 10, 474–478 (2018) 3. Athyros, V. G. et al. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. The Lancet 376, 1916–1922 (2010) 4. Shen, K., Singh, A. D., Modaresi Esfeh, J. & Wakim-Fleming, J. Therapies for non-alcoholic fatty liver disease: A 2022 update. World J. Hepatol. 14, 1718–1729

• Prevalence of MAFLD was highest in Whites (42.7%),

among Whites (4.9%), followed by Hispanics (4.2%). • Hispanics with MAFLD were significantly younger, and

• LDL-C was the highest among Blacks, while Whites

Amongst diabetics with MAFLD, Hispanics had poorest glycemic control followed by Asians (Table 3)

- ~16% of Asians with F2-F3 MAFLD
- LDL-C highest among Blacks
- HbA1c % highest among Hispanics

Conclusion

Nearly 40% of MI/IS patients in the United States

demonstrate ultrasound evidence of MAFLD.

• Significant racial and ethnic disparities exist in MAFLD

Substantial gaps between observed and target LDL-C (< 55 mg/dl), and HbA1c% $(\leq 7\%)$ in this high-risk

Recognition and targeted management of MAFLD

References